
Breadboards, RP2040-Zero,

& Python

ECE 401 Senior Design I

Week #3

Please visit Bison Academy for corresponding lecture notes,
homework sets, and videos

Introduction

In Senior Design I, you can

Use a microcontroller, or

Not use a microcontroller

Microcontrollers can simplify designs

They provide a great deal of flexibility

They make changing your design as
simple as downloading a new program

It's your choice: if you do use a uP

Use a RP2040-Zero

Same processor used in ECE 476

- Lots of online help on Bison Academy

Smaller footprint

- More than enough I/O for ECE 401

$3ea and we have them in stock

+5V

gnd

+3.3V

GP29

GP28

GP27

GP26

GP15

GP14

GP0

GP1

GP2

GP3

GP4

GP5

GP6

GP7

GP8

GP9

GP10

GP11

GP12

GP13

RP2040
Zero

GP16

NeoPxel

USB-C

Topics:

In this lecture, we going to cover

Breadboards

- What they are
- Do's and Don'ts of breadboard design

Hardware:

- How to wire up a RP2040-Zero
- How to connect a push button (binary input)
- How to connect an LED (binary output)

Software:

- Writing a program using Python
- Setting up a Pi-Pico to execute that program on power-on

Breadboards:

Once you have your circuit

Designed on paper, and

Tested in simulation (CircuitLab)

you're ready to test your design in
hardware. Breadboards are an easy way
to build your circuit and test your design.
They're also easy to modify and change:
components can be easily added and
removed from a breadboard.

Most of the breadboard used in ECE are 830 tie breadboards. These have

Four edge connectors that are shorted along the length of the breadboard

two left side, two right side. Usually used for power and ground

Two sets of connectors in the middle

one left and one right of the center bar.

Across the middle is an insulator

this separates the middle connectors by 300 mils: the width of a typical IC,

For example, the following breadboard circuit uses

The red trace along the top and bottom as +5V

The blue trace along the top and bottom as 0V

Two IC's go across the middle divider.

The four pins above and below each IC then allow you to connect to that pin

Purpose of Breadboarding:
Verify your design works in practice

Step 1) Paper Design

In theory it works...

Step 2) Simulation (CircuitLab)

Check your design with nonlinear
models

Step 3) Breadboard

Check your actual design

Step 4) PCB

More permanent & abuse tolerant

Less noise sensitive

Smaller, easier to package

Notes: With a breadboard

Changes are fairly easy to implement

Components & values can be changed pretty easily

Tricks of Breadboarding
1) Keep Your Circuit Neat

Use short wires

Use short component leads

Organize your breadboard into
sections

Keeping your wires short

Reduces the noise picked up by
your wires

Reduces the chance of a wire
falling out

Helps you see the wiring in your
board

Helps when you need to modify
your breadboard circuit.

2. Color Code your Wires
Use red wires for +5V

Use black wires for ground

Use different colors for different types of
signals.

By color coding your wires,

You can quickly spot if a chip is missing
power and/or ground.

You can quickly see if a signal wire is
missing between two ICs

3. Use Potentiometers (2 max)

Potentiometers allow you to

Adjust voltages (0..5V)

Adjust resistors (0% to 100%)

Replacing a resistor with a potentiometer
allows you to tune your circuit without
having to replace components

Really useful when you get to PCB's

But...

A resistor costs $0.02

Potentiometers cost $1.55

5V 0V

Variable Voltage Variable Resistance

+5V

Vcc Reset

OutputDischarge

Threshold

Trigger

R1

R2

0.1uF

7

6

2

1

8 4

3

+5V

V1

V2

V3

100k

100k

Use Potentiometers (cont'd)

Example: Variable voltage

Allows you to adjust the voltage the comparitor switches

Allows you to adjsust the light level where the you turn on

+5V

1k

Light

Sensor 10k

pot

+5V

Va

Vb

Y

Va > Vb

+5V

Pots allow you to adjust a voltage

4. Breadboards & Test Points

Some things to think about when using a breadboard are:

How do you test your circuit?

What signal do you look at?

What should the signals look like?

What procedures do you use?

Note what signals you look at and record what you read. This affects your
upcoming PCB layout:

These same signals should be measured in simulation and on your PCB

Test points should be added to your PCB so that you have access to these
signals.

Test Point Example: Schmitt Trigger Circuit

TP1: 5V TP4: V(on) TP7: 0.2V means saturated

TP2: 0V TP5: 0V=off, 5V=on

TP3: V(sensor) TP6: Id = (5V - V6)/145

5V

145

Red

LED

1k
b

c

e

5V

R

1k

Voltage Divider
BJT Switch

Id = 20mA

when on
5V

179k10k

179k10k

Schmitt Trgger

+5V

TP3

TP4

TP5

TP7

TP1

TP2

TP6

5. Keep Your Breadboard

When done testing your breadboard, keep it together, intact (i.e. don't
cannibalize it for parts). If your PCB doesn't work properly, your (working)
breadboard circuit will be helpful in debugging what part of your PCB
works (and has similar signals), and which part does not work.

This means you'll need two of every part in ECE 401

One for your breadboard circuit, and

One for your PCB.

That's OK.

Breadboards with a Raspberry Pi Pico

Power can be provided two ways:

USB

- 5V is an output pin (2A max)
- 3.3V is an output pin (100mA max)

5.0V (pin 1):

- Apply 5.0V to +5V
- Bypass the USB

Whole circuit needs to have a common
ground

Pin 2 on RP-Zero

+5V

gnd

+3.3V

GP29

GP28

GP27

GP26

GP15

GP14

GP0

GP1

GP2

GP3

GP4

GP5

GP6

GP7

GP8

GP9

GP10

GP11

GP12

GP13

RP2040
Zero

GP16

NeoPxel

USB-C

Binary I/O:
15 I/O pins available for binary outputs

- Don't use GP9-GP13
- They don't fit on breadboards

GP26-GP29 can also be analog inputs

Binary Outputs

0V is logic 0

3.3V is logic 1

Can source or sink up to 12mA

Binary Inputs:

(0.0V - 0.8V) is logic 0

(2.0V to 3.5V) is logic 1

Do not connect 5.0V to the input

pins. This may damage the RP-Zero.

+5V

gnd

+3.3V

GP29

GP28

GP27

GP26

GP15

GP14

GP0

GP1

GP2

GP3

GP4

GP5

GP6

GP7

GP8

GP9

GP10

GP11

GP12

GP13

RP2040
Zero

GP16

NeoPxel

USB-C

ADC3

ADC2

ADC1

ADC0

Pi-Zero Example:

Connect your Pico to

Two push buttons (inputs),

A speaker (output), and

A red LED (output)

Schematics is shown on top

Resistors limit the current

I < 12mA

Corresponding breadboard
shown below

Red LED

(1.9V)

Speaker

(8 Ohms)

120

267

12mA

12mA

GP26

GP6

GP14

GP8

(internal

pull-up R)

(internal

pull-up R)

RP2040-Zero

Momentary

Switch

X

Y

0V/3.3V

0V/3.3V

Thonny and MicroPython

Several programming languages are
available

Assembler

C

Python (MicroPython for a Pi-Pico)

among others.

In ECE 401, focus on Python

Installing Thonny
Locate Thonny 4.1.4

Download to PC

Connect to Pico board

Install Micropython

Click on the lower-right corner

Select your Pi-Pico chip

It will prompt you to install MicroPython if
this is the first time using your chip

- Install MicroPython
- Chip = Raspberry Pi Pico / Pico H

Thonny: Command Window

Open Save Run Stop

Python is similar to Matlab:

The shell window is similar to
Matlab's command window

You can type commands directly in
the shell window.

Python like a calculator:

Shell

>>> a = 2

>>> b = 3

>>> c = 2*a + 3*b + 4

>>> print c

 17

Thonny: Script Window

Open Save Run Stop

The top window behaves like Matlab's
script window

Place code to execute here

Run this code by clicking on Run

Results show up in the shell window

a = 2

b = 3

c = 2*a + 3*b + 4

print(c)

Shell

>>>

 17

Binary I/O with Python

Python is a little different than Matlab.

Functions are included using the import command.

This makes that library available for use in your program.

Machine Library

Routines specific to the microcontroller you're using

Setting I/O pins to input

Output a square wave

import machine

Output

Button = machine.Pin(0, Pin.OUT)

Inputs

LED0 = machine.Pin(6, Pin.IN)

LED1 = machine.Pin(7, Pin.IN, Pin.PULL_UP)

LED2 = maching.Pin(8, Pin.IN, Pin.PULL_DOWN)

Float / Pull-Up / Pull-Down

Each input pin can have an internal resistor

Default: no resistor

Pull-Up: Pulled up to 3.3V with R

Pull-Down: Tied to ground with R

Pull-up is preferred for push buttons

Pressing the button ties input GPx to ground

Safer: No confusion on what logic 0 means

- ground

3.3V

50k - 65k

50k - 65k

GPX

GPX

GPX

No Resistors

Pull-Up

Pull-Down

Pi-Pico

Pi-Pico

Pi-Pico

Binary Outputs

Each output pin can be set to

Logic 1 (3.3V) or

Logic 0 (0V)

Set, Clear, Toggle commands are
available

read

Y = Button.value()

write

LED0.toggle() # toggle LED0 on/off

LED0.value(1) # set LED0

LED0.value(0) # clear LED0

LED0.low() # clear LED0

LED0.high() # set LED0

Time Library
Shows better in the video

Open Save Run Stop

The time library contains wait
routines:

sleep(x): pause x seconds. x can
be a floating-point number

sleep_ms(x): pause x
milliseconds. x must be an integer

sleep_us(x): pause x
microseconds. x must be an
integer.

Example: Every 500ms

Read the button values

Display their value in the shell
window

from machine import Pin

from time import sleep_ms

B0 = Pin(14, Pin.IN, Pin.PULL_UP)

B1 = Pin(8, Pin.IN, Pin.PULL_UP)

while(1):

 X = B0.value()
 Y = B1.value()

 print(X, Y)

 sleep_ms(500)

shell

MPY: soft reboot

1 1

0 1

1 1

1 0
1 0

Time Library (cont'd)

Blink and LED on and off every 2 seconds

Open Save Run Stop

from machine import Pin

from time import sleep

LED = Pin(26, Pin.OUT)

LED.value(1)

print('LED On')

sleep(2)

LED.value(0)
print('LED Off')

Shell

>>>

 LED On

 LED Off

If and While Statements
for-loops, while-loops, and if-statements are
really useful

Note: Python does not use end-statements

Indentation indicated which lines are within a loop

Empty loops are not allowed

pass behaves like a nop stement (do nothing)

Carriage returns and intendations have meaning

unlike C

4-spaces are standard per level

Anything is allowed - just be consistent

for i in range(0,6):
 d1 = i

 for j in

range(0,6):

 d2 = j

 y = d1 + d2

t = 0

dt = 0.01

while(t < 5):

 y = sin(t)

 t += dt

if(x < 3):

 y = 2*x + 4

elif(x < 5):

 y = 3 - 2*x

else:

 y = 0

Example: Turn on and off a light

Open Save Run Stop

GP14:

Input variable B0

Turn on the light

Logic 0 when pressed

GP8

Input variable B1

Turn off the light

Logic 0 when pressed

GP26

Output variable

Connected to an LED throgh R

(limit the current to <12mA)

from machine import Pin

from time import sleep_ms

B0 = Pin(14, Pin.IN, Pin.PULL_UP)

B1 = Pin(8, Pin.IN, Pin.PULL_UP)

LED = Pin(26, Pin.OUT)

while(1):
 X = B0.value()

 Y = B1.value()

 if(X == 0):

 LED.value(1)

 if(Y == 0):

 LED.value(0)

 print(X, Y, LED.value())

 sleep_ms(100)

Example: Turn on and off a light

Breadboard Results

Two-Key Piano:

Open Save Run Stop

PWM allows you to

Output a square wave

At a given frequency

- units Hz

At a given duty cycle

- duty_u16(0) = 0%
- duty_u16(0xFFFF) = 100%
- duty_ns(x) = x us on-time

This program plays

220Hz when B0 is pressed

260Hz when B1 is pressed

from machine import Pin, PWM

from time import sleep_ms

B0 = Pin(14, Pin.IN, Pin.PULL_UP)

B1 = Pin(8, Pin.IN, Pin.PULL_UP)

LED = Pin(26, Pin.OUT)

Spkr = PWM(Pin(6))
Spkr.freq(220)

Spkr.duty_u16(0)

while(1):

 X = B0.value()

 Y = B1.value()

 if(X == 0):

 Spkr.freq(220)

 Spkr.duty_u16(0x8000)

 elif(Y == 0):

 Spkr.freq(260)

 Spkr.duty_u16(0x8000)
 else:

 Spkr.duty_u16(0)

 sleep_ms(10)

For Loops

Open Save Run Stop

Similar to Matlab

Indentation indicates statements
within the for-loop

range(0,5)

Start at 0

Increment by one each loop

Continue while <5

- Slightly different than Matlab

range(0,5,2)

Step size = 2

[1,3,5,7,11]

Step through the array

for i in range(0,5):

 print(i, i*i)

for i in range(0,5, 2):

 print(i, i*i)

for i in [1,3,5,7]:

 print(i, i*i)

Shell

>>>

 0 0

 1 1

 2 4

 3 9

 4 16

 0 0

 2 4

 4 16

 1 1

 3 9

 5 25

 7 49

Counter in Python (take 1)

Open Save Run Stop

Using the previous hardware,
count how many times button
GP14 is pressed

This uses polling

Interrupts are also supported

(see ECE 476 if interested)

from machine import Pin

from time import sleep

Button = Pin(14, Pin.IN, Pin.PULL_UP)

N = 0

while(1):
 while(Button.value() == 0):

 pass

 while(Button.value() == 1):

 pass

 N = N + 1

 print(N)
Shell

>>>

1

2
3

4

5

Subroutines in Python

In MicroPython, subroutines are defined by the keyword def, short for
define. Ths simplest example would be a routine which

is passed nothing,

returns nothing, and

simply prints 'hello' when called:

When you press the run command

Python installs the subroutine defined as SayHello

It then runs the main routine (instruction following all of the definitions)

Open Save Run Stop

def SayHello():

 print('hello')

Start of main routine

SayHello()
shell

>>>

hello

Passing parameters to a subroutine

You can pass multiple parameters by simply including them in the definition

Open Save Run Stop

def Multiply(A, B):

 C = A * B

 print(A, ' * ', B, ' = ',C)

Start of main routine

Multiply(4,6)
shell

>>>
4 * 6 = 24

>>> Multiply(8,7)

8 * 7 = 56

Returning Numbers

Open Save Run Stop

You can return one number

You can return multiple
numbers

Received as an array, or

Received as four separate
variables

Example of Returning four Numbers

def Operate(A, B):

 C0 = A + B

 C1 = A - B

 C2 = A * B

 C3 = A / B

 return([C0, C1, C2, C3])

Start of main routine

X = Operate(4,6)

print(X)
shell

>>>

[10, -2, 24, 0.666667]

>>> C = Operate(8,7)

>>> print(C)

[15, 1, 56, 1.4142857]

>>> [a, b, c, d] = Operate(8,7)

>>>> print(a, b, c, d)

15, 1, 56, 1.4142857

Program Execution on Startup

Make your Pi-Zero blink three times at 2Hz on power-up

On for 100ms

Off for 400ms

repeat 3x

First, create a program (assume GP26 has an LED attached)

Open Save Run Stop

from machine import Pin

from time import sleep

LED = Pin(26, Pin.OUT)

for i in range(0,3):

 LED.value(1)

 sleep(0.1)

 LED.value(0)

 sleep(0.4)
Shell

Once this runs,

Go to File Save As

Select save to Raspberry Pi Pico

Save as main.py

On power up, this program will execute.

Result

On power up, the red LED (GP26) blinks three times

On-Board LED

The RP-Zero has an onboard RGB LED

This is a NeoPixel

Single-Wire interface

Connected to GP16

To set the color

Send 24 bits of data to GP16

- Green - Red - Blue

Logic 1 and 0 set by timing

- 0: 300ns high, 900ns low
- 1: 700ns high, 500ns low

On-Board LED - Sample Code
bitstream() outputs a data stream with precise timing

Strings of NeoPixels are supported

Please refer to ECE 476 Lecture #26 for more details

from machine import Pin, bitstream

from time import sleep

timing = [300, 900, 700, 500]

np = Pin(16, Pin.OUT)

red = bytearray([0,20,0])

green = bytearray([20,0,0])

blue = bytearray([0,0,20])

while(1):

 bitstream(np, 0, timing, red)

 sleep(1)

 bitstream(np, 0, timing, green)
 sleep(1)

 bitstream(np, 0, timing, blue)

 sleep(1)

For more information

ECE 476/676 Advanced Embedded Systems
https://www.BisonAcademy.com/ECE476/index.html

Also also
https://www.w3schools.com/python/default.asp

https://docs.micropython.org/en/latest/pyboard/tutorial/index.html

https://docs.micropython.org/en/latest/library/index.html

https://www.fredscave.com/02-about.html

Homework #3:

Fill In Section #2: Requirements

Engineering Requirements

Gantt Chart

Engineering Requirements (partial list):

Must operate off of 5VDC

Must include at least one integrated circuit

Must include at least one LED with Id = 20mA +/- 5mA

Must include at least one NPN and one PNP transistor

Power supply = 9V battery (mark +/- polarity)

use a LM7805 regulator to drop 9V to 5V

Must have a reverse-polarity protection diode

Must have a 1/4 Watt 1-Ohm resistor in series with the power supply

(continued next page)

Update Section #3: Paper Design in your OneNote document

Include:

Your circuit schematics

Calculations for R's and C's

Calculations for voltages you exect to see.

Note: If you're using a microprocessor, assume the output pins are either 0V
or 3.3V.

