
SCI Interrupts & GPS

NDSU ECE 376
Lecture #25

Inst: Jake Glower

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

SCI Communications
Send and receive serial data using SCI protocol.

Send data to a PC via the RS232 serial port.

Why:

Debugging code.

Sending data to a PC is a useful way to debug code, similar to the LCD display, or collect data.

Hyperterm lets you see and save data that comes in on the COM1 or COM2 port.

Have two PIC processors talk to each other

RC7/RX

RC6/TX

RC7/RX

RC6/TX

gnd gnd

PIC PIC

Timing:

A generic SCI message has

A start bit (high to low transition)

8 data bits - least sgnificant bit first

0, 1, or 2 stop bits

bit 0 bit 7

stop bit(s)

1 2 3

Next byte can start

anytime after the

stop bits

Start

bit

Start of Message
Width of each bit

is constant and set

by BRGH

T

bit 1 bit 6

SCI Transmit:

Built into the PIC processor

Wait for buffer to become free (TRMT = 1)

Write to TXREG

Write to TXREG

TX 0 1 2 3 4 5 6 7

TRMT

datastart

bit ready for new message

SCI Receive
The hardware detects the start bit automatically

The hardware sets up the timing for reading in each bit

The hardware actually reads each bit three times and does best-of-three voting to

reduce errors

The hardware then signals the software when 8-bits have beed read in by setting

RCIF

Once a byte has been recieved, the data can be read from RCREG.

RX 0 1 2 3 4 5 6 7

RXIF

datastart

bit Read message from RCREG

How: Software:

1. Set up PORTC as follows:

TRISC (address 0x__ - Bank __)

Bit 7 6 5 4 3 2 1 0

name RX TX - - - - - -

value 1 1 x x x x x x

note: Both transmit and receive are set up as input.

When TXEN=1 (transmit enable), you override TRISC and make RC6 an output.

When TXEN=0 (transmit disabled), RC6 returns to high-impedance. This allows

someone else to drive the data line.

2. Set the baud rate.

There is no clock, so the two devices must know how long each bit is.

10ms

RX

time

RX

start

1 1 1

20ms

RX

start 2.5ms

0 0 0 0 0 0 0 1

Baud Rates with 20MHz Crystals
Baud Rate SPBRG BRGH BRG16 SYNC Error (%)

2400 255 0 1 0 -1.70%

4800 129 0 1 0 -0.16%

9600 255 1 1 0 -1.70%

19,200 129 1 1 0 -0.16%

38,400 64 1 1 0 -0.16%

57,600 42 1 1 0 -0.95%

115,200 21 1 1 0 +1.44%

Initialization:

Initialize the SCI port to send and recieve data at 9600 baud:

void SCI_Init(void)
{
 TRISC = TRISC | 0xC0;
 TXIE = 0;
 RCIE = 0;
 BRGH = 1;
 BRG16 = 1;
 SYNC = 0;
 SPBRG = 255;
 TXSTA = 0x22;
 RCSTA = 0x90;
 }

Display raw serial port data

SCI Interrupt:

Reads in data from the PC

Echos back each character as you type it in

Saves the message in a buffer, and

Looks for a carriage return <13> to terminate the message.

Since the data could arrive at any time

Use interrupts to save the data.

Use a stack to save the data as it comes in.

Echo back what you read on the SCI port. If you connect to a PC, you should see

Display the data on an LCD display.

Interrupt Service Routine

Main routine displays MSG0[] and MSG1[]

void interrupt IntServe(void)
{
 if (RCIF) {
 TEMP = RCREG & 0x7F;
 TXREG = TEMP;
 if (TEMP > 20) MSG0[M++] = TEMP;
 if (M > 21) M = 21;
 if (TEMP == 13){
 for (i=M+1; i<21; i++) MSG1[i] = ' ';
 for (i=0; i<20; i++) {
 MSG1[i] = MSG0[i];
 MSG0[i] = ' ';
 }
 M = 0;
 }
 RCIF = 0;
 }
 }

Read 0000 to 9999 from the keyboard

FLAG tells the main routine that data is ready
void interrupt IntServe(void)
{
 if (RCIF) {
 TEMP = RCREG & 0x7F;
 TXREG = TEMP;
 if (TEMP > 20) MSG0[M++] = TEMP;
 if (M > 21) M = 21;
 if (TEMP == 13){
 FLAG = 1;
 for (i=M+1; i<21; i++) MSG1[i] = ' ';
 for (i=0; i<20; i++) {
 MSG1[i] = MSG0[i];
 MSG0[i] = ' ';
 }
 M = 0;
 }
 RCIF = 0;
 }
 }

Main Routine
 while(1) {
 LCD_Move(0,0);
 for(i=0; i<16; i++) LCD_Write(MSG1[i]);

 if(FLAG) {
 DATA = (MSG1[0] - 48) * 100
 + (MSG1[1] - 48) * 10
 + (MSG1[2] - 48);
 LCD_Move(1,0);
 LCD_Out(DATA, 3, 0);
 FLAG = 0;
 }
 }

GPS Data

GPS data is often transmitted using SCI protocol at 9600 baud

Problems:
How to read in the GPS data into a buffer, and

How to parse the data, and

How to convert to meters.

$GPGGA,152410.979,4731.42559,N,09233.10091,W,1,10,0.8,436.16,M,-30.59,M,

$GPGSA,A,3,15,05,08,29,27,18,21,26,06,22,,,1.4,0.8,1.1*30

$GPGSV,3,1,12,21,74,292,42,15,68,119,47,18,56,265,45,26,38,053,46*76

$GPGSV,3,2,12,48,25,230,23,29,25,190,39,06,24,310,39,27,18,120,42*7F

$GPGSV,3,3,12,03,15,319,,22,13,258,33,05,11,074,40,08,08,026,33*7D

$GPRMC,152410.979,A,4731.42559,N,09233.10091,W,0002.15,172.05,140312,,

$GPVTG,172.05,T,,M,0002.15,N,00003.98,K,A*08

$GPZDA,152410.979,14,03,2012,00,00*55

Reading GPS data into a buffer:

Already done. Just use 80-bits per message.

Parse the Data

$GPRMC,152410.979,A,4731.42559,N,09233.10091,W,0002.15,172.05,140312,,

Field Data Meaning

1 GPRMC Recommended minimum GPS data

2 152410.979 Time: 15:23:10.979 UTC

3 A A = OK, V = warning

4,5 4731.42559,N Latitude: 47d 21.42559'

6,7 09233.10091,W Longitude: 092d 33.10091'

8 0002.15 Speed (knots)

9 172.05 Direction of motion (degrees)

10 140312 Date: 14:03:12
March 14, 2012

Code:

// Latitude in minutes

 LATITUDE = (GPS[20] - 48)*600 +
 (GPS[21] - 48)*60 +
 (GPS[23] - 48)*10 +
 (GPS[24] - 48)*1 +
 (GPS[25] - 48)*0.1 +
 (GPS[26] - 48)*0.01 +
 (GPS[27] - 48)*0.001;

// Longitude in minutes

 LONGITUDE = (GPS[33] - 48)*6000 +
 (GPS[34] - 48)*600 +
 (GPS[35] - 48)*60 +
 (GPS[37] - 48)*10 +
 (GPS[38] - 48)*1 +
 (GPS[39] - 48)*0.1 +
 (GPS[40] - 48)*0.01 +
 (GPS[41] - 48)*0.001;

Conversion to meters

If you want to convert to normal units, at Fargo, ND, this is

Polar Radius = 6,356.8 km

1 minute = 1849.12 meters

Equatorial Radius = 6,378.1 km

1 minute = 1,855.31 meters at the equator

1 minute = 1,334.60 meters at 46 degrees north (Fargo)

1 Knot = 0.5144 meters/second

Example:

Data Encryption

Encrypt data as you transmit it

Caeser

Send your message in Latin

Shift each letter by 3

Easy to crack

void interrupt IntServe(void)

 if (RCIF) {

 TEMP = RCREG + 3;
 while (!TRMT); TXREG = TEMP;

 // etc.

 RCIF = 0;
 }
 }

Wkuhh#ulqjv#iru#wkh#hoylq

Three rings for the elvin

Data Encryption (take 2)

1-to-1 mapping of each letter

Encryption key is also the decription key

Frequency of letters allows you to decrypt

void interrupt IntServe(void)

 if (RCIF) {

 TEMP = RCREG ^ 0x0F;
 while (!TRMT); TXREG = TEMP;

 // etc.

 RCIF = 0;
 }
 }

Three rings for the elvin

[g}jj/}fah|/i`}/{gj/jcyfa/dfah|

Data Encryption (take 3)

Use a different encryption key for each letter

Scooby Doo: "This book is the key!"

"Three rings for the elvin kings under the sky..."

void interrupt IntServe(void)

 if (RCIF) {

 TEMP = RCREG ^ LOTR[i++];
 while (!TRMT); TXREG = TEMP;

 // etc.

 RCIF = 0;
 }
 }

One ring to find them,

|gxfxj}oot}aag}eu}nfiamdcjm fc�

Data Encruption

Use a random number generator for

the key

Random number generators generate

the same sequence given the same

seed

If you don't know the seed, you can't

decipher the message

Basis for Ultra in WWII

Modern Data Encryption

Come up with an encryption scheme that even the programmer can't break

