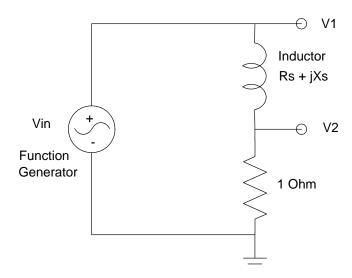
Lab 1: RL Model of an Inductor

Note: You need an oscilloscope for this lab. We'll meet in room 235 for this week only. Hereafter, we'll meet in room 105 (the power lab)

Objective:


Determine a RL circuit model for an inductor at four different frequencies.

Circuit Diagram:

Use a 1 Ohm resistor to measure current in series with the inductor. The impedance is then

$$Z_{total} = (R_s + jX_s) + 1 = \frac{|V_1|}{|V_2|} \angle \theta$$

where θ is the phase shift in the current (V2) relative to voltage (V1)

Procedure:

Select an inductor. This can be a transformer with only one side energized or an actual inductor.

1) DC Model: Determine the resistance of the inductor at DC. Phase doesn't make sense at DC, hence the imaginary portion of the impedance is zero.

DC Model	
Rs	jXs
	j0

2) 60 Hz Model: Apply a 60	Hz signal to the	e inductor along with a 1	Ohm resistor	to measure current.	Measure the
voltages and the phase shift.	From this comp	oute Rs and Xs			

Voltage (V1)	Current (V2)	Phase Shift (degrees)
	60 Hz Model	
Rs		jXs

3) 200Hz Model: Repeat step 2 at 200Hz.

Voltage (V1)	Current (V2)	Phase Shift (degrees)

200 Hz Model		
Rs	jXs	

4) 1kHz Model: Repeat step 2 at 1kHz.

Voltage (V1)	Current (V2)	Phase Shift (degrees)

1kHz Model		
Rs	jXs	

Things to note:

- The current drops as frequency goes up. The changing magnetic field produces a back-voltage, which reduces the current.
- The resistance goes up as frequency goes up. There are losses in addition to the copper losses in the wire. These losses are lumped together in Rs.