ECE 111: Homework 16

ECE 331 Energy Conversion

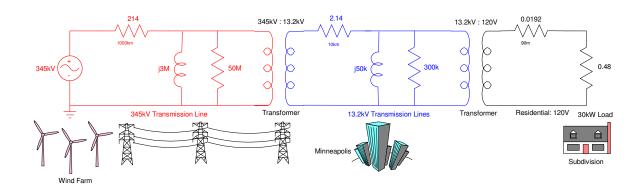
Due Monday, May 12th. Please submit via email or on BlackBoard

1) Determine the circuit model for a 13.2kV : 240V transformer is tested with the following test results:

Transformer Model

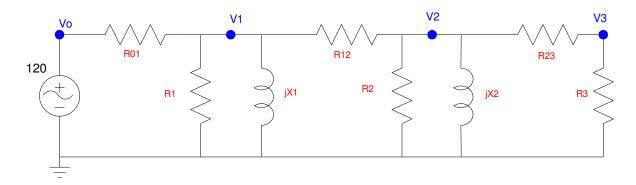
	V	Power	pf
Open-Circuit Test	V1 = 13.2kV	20 W	0.01
Short-Circuit Test	V2 = 24V	25 W	0.98

Core Model (open-circuit test)


This is the series model. The parallel model comes from the inverse of Z

```
>> 1/Z
ans = 1.1478e-007 -1.1478e-005i
>> Rc = 1 / real(1/Z)
Rc = 8.7120e+006
>> Xc = -1 / imag(1/Z)
Xc = 8.7124e+004
>>
```

Line Model (short-circuit test)


For the utility grid on the back of the page....

2) Convert the voltages and impedances to the 120V node (right side)


```
R01 = 214 * (120/345e3)^2
X1 = j*3e6 * (120/345e3)^2
R1 = 50e6 * (120/345e3)^2
R12 = 2.14 * (120/13.2e3)^2
R2 = 300e3 * (120/13.2e3)^2
X2 = j*50e3 * (120/13.2e3)^2
R23 = 0.0192
R3 = 0.48
R01 =
        2.5890e-005
X1 =
               0 + 0.3629i
R1 =
          6.0491
R12 =
        1.7686e-004
R2 =
         24.7934
X2 =
               0 + 4.1322i
R23 =
           0.0192
R3 =
          0.4800
```

3) Write the voltage node equations for this circuit (with transformers removed)

$$V_{0} = 120$$

$$\left(\frac{V_{1} - V_{0}}{R_{01}}\right) + \left(\frac{V_{1}}{R_{1}}\right) + \left(\frac{V_{1}}{jX_{1}}\right) + \left(\frac{V_{1} - V_{2}}{R_{12}}\right) = 0$$

$$\left(\frac{V_{2} - V_{1}}{R_{12}}\right) + \left(\frac{V_{2}}{R_{2}}\right) + \left(\frac{V_{2}}{jX_{2}}\right) + \left(\frac{V_{2} - V_{3}}{R_{12}}\right) = 0$$

$$\left(\frac{V_{3} - V_{2}}{R_{23}}\right) + \left(\frac{V_{3}}{R_{3}}\right) = 0$$

4) Determine the voltages at each node

Group terms

$$V_{0} = 120$$

$$-\left(\frac{1}{R_{01}}\right)V_{0} + \left(\frac{1}{R_{01}} + \frac{1}{R_{1}} + \frac{1}{jX_{1}} + \frac{1}{R_{12}}\right)V_{1} - \left(\frac{1}{R_{12}}\right)V_{2} = 0$$

$$-\left(\frac{1}{R_{12}}\right)V_{1} + \left(\frac{1}{R_{12}} + \frac{1}{R_{2}} + \frac{1}{jX_{2}} + \frac{1}{R_{23}}\right)V_{2} - \left(\frac{1}{R_{23}}\right)V_{3} = 0$$

$$-\left(\frac{1}{R_{23}}\right)V_{2} + \left(\frac{1}{R_{23}} + \frac{1}{R_{3}}\right)V_{3} = 0$$

Place in matrix form

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \left(\frac{-1}{R_{01}}\right) \left(\frac{1}{R_{01}} + \frac{1}{R_1} + \frac{1}{jX_1} + \frac{1}{R_{12}}\right) & \left(\frac{-1}{R_{12}}\right) & 0 \\ 0 & \left(\frac{-1}{R_{12}}\right) & \left(\frac{1}{R_{12}} + \frac{1}{R_2} + \frac{1}{jX_2} + \frac{1}{R_{23}}\right) & \left(\frac{-1}{R_{23}}\right) \\ 0 & 0 & \left(\frac{-1}{R_{23}}\right) & \left(\frac{1}{R_{23}} + \frac{1}{R_3}\right) \end{bmatrix} \begin{bmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} 120 \\ 0 \\ 0 \end{bmatrix}$$

Solve in Matlab

```
R01 = 214 * (120/345e3)^2;
X1 = j*3e6 * (120/345e3)^2;

X1 = j*3e6 * (120/345e3)^2;

R1 = 50e6 * (120/345e3)^2;

R12 = 2.14 * (120/13.2e3)^2;

R2 = 300e3 * (120/13.2e3)^2;

X2 = j*50e3 * (120/13.2e3)^2;
R23 = 0.0192;
R3 = 0.48;
b1 = [1,0,0,0];
b2 = [-1/R01, 1/R01+1/R1+1/X1+1/R12, -1/R12, 0];
b3 = [0, -1/R12, 1/R12+1/R2+1/X2+1/R23, -1/R23];
b4 = [0,0,-1/R23,1/R23+1/R3];
B = [b1; b2; b3; b4];
A = [120; 0; 0; 0];
V = inv(B)*A
V0
        120.00
        119.99 + 0.01i
V1
V2
        119.95 + 0.01i
V3
        115.34 + 0.01i
```

The voltage at the customer has drooped down to 115.34 Volts

- 5) Determine the efficiency of this system
 - Ignoring the core losses
 - Assumes a large number of customers share these losses
 - Including the core losses

Assumes a single customer

```
V0 = V(1);
V1 = V(2);
V2 = V(3);
V3 = V(4);
P01 = abs(V0 - V1)^2 / R01
P1 = abs(V1)^2 / R1
P12 = abs(V1 - V2)^2 / R12
P2 = abs(V2)^2 / R2
P23 = abs(V2 - V3)^2 / R23
P3 = abs(V3)^2 / R3
eff = P3 / (P1 + P12 + P2 + P23 + P3)
eff = P3 / (P12 + P23 + P3)
P01 = 5.1660
P1 = 2380.2
P12 = 10.7756
P2 = 580.3140
P23 = 1108.5
P3 = 27713
```

The customer is using 27.7kW of power

The efficiency if you incude everything is 87.17%

```
eff = P3 / (P1 + P12 + P2 + P23 + P3)
eff = 0.8717
```

The efficiency if you ignore the core losses (meaning their losses are distributed over a large number of customers) is 96.12%

```
eff = P3 / (P12 + P23 + P3)
eff = 0.9612
```

Transformers allow you to create a pretty efficient means of transporting electicity over large distances