ECE 111 - Homework #3

Math 105: Trigonometry.

Due Monday, February 3rd. Please submit via email or on BlackBoard

Polar to Rectangular Conversions

1) Determine the final position of A: (x,y)

$$A = (6\angle -93^{\circ}) + (11\angle 70^{\circ}) + (8\angle 87^{\circ})$$

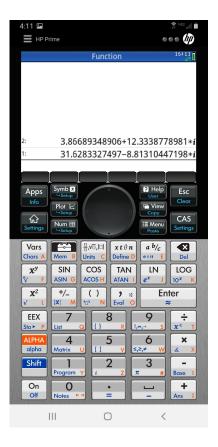
In Matlab

On an HP Prime

Setting - Entry - RPN

```
6 angle -93
enter
11 angle 70
+
8 angle 87
+
angle
```


2) Determine final position of B: (x,y)

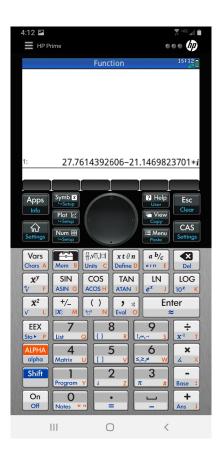

$$B = (5\angle - 22^{0}) + (22\angle 31^{0}) + (20\angle - 66^{0})$$

In Matlab

```
>> x1 = 5 * cos(-22*pi/180)
x1 = 4.6359
>> y1 = 5*sin(-22*pi/180)
y1 = -1.8730
>> x = 22*\cos(31*pi/180)
x = 18.8577
>> x2 = 22*cos(31*pi/180)
x2 = 18.8577
>> y2 = 22*sin(31*pi/180)
y2 = 11.3308
>> x3 = 20*\cos(-66*pi/180)
x3 = 8.1347
>> y3 = 20*sin(-66*pi/180)
y3 = -18.2709
>> Bx = x1 + x2 + x3
Bx = 31.6283
>> By = y1 + y2 + y3
By = -8.8131
>>
```

On an HP-Prime calculator

```
5 angle -22 enter
22 angle 31 +
20 angle -66 +
angle
```

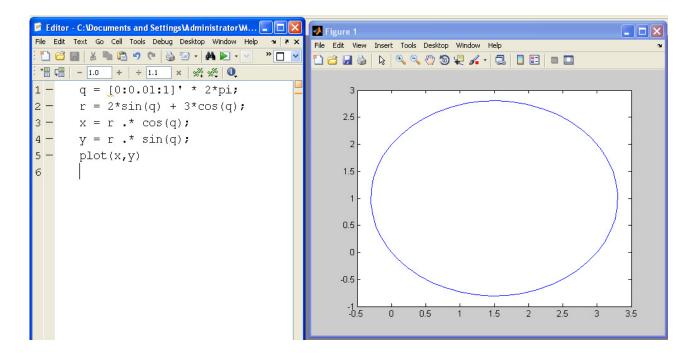


- 3) Where is B relative to A (i.e. what is C = B A?)
 - In (x,y) coordinates
 - In polar coordinates

In Matlab

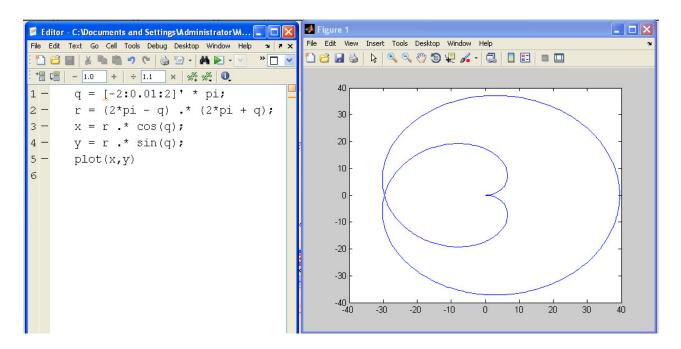
On an HP-Prime

- A and B are already on the stack. Just subtract $^{-}_{+/-}$

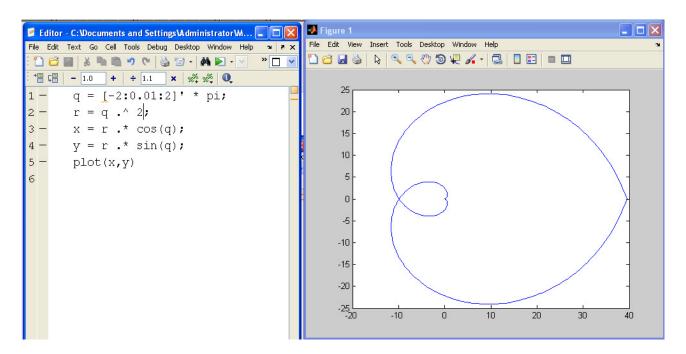


Plotting Polar Functions

- 4) Plot the following functions in Matlab for $-2\pi < \theta < 2\pi$
 - Note: plot() plots in cartesian coordinates. Each function needs to be converted from polar to rectangular.
- a) $r = 2 \sin(\theta) + 3 \cos(\theta)$


Matlab Script & Figure:

not surprisingly, this plots as a circle. Trig functions are all about circles.



b)
$$r = (2\pi - \theta)(2\pi + \theta)$$

sort of a heart - happy Valentine's day!

c)
$$r = \theta^2$$
 another variation of a heart

Robot Tip Position (Forward Kinematics)

A 2D robot has three arms with lengths of {3.0, 2.0, 1.0} meters. The final tip positionis

$$x_1 = 3\cos(\theta_1)$$
 $y_1 = 3\sin(\theta_1)$
 $x_2 = x_1 + 2\cos(\theta_1 + \theta_2)$ $y_2 = y_1 + 2\sin(\theta_1 + \theta_2)$
 $x_3 = x_2 + \cos(\theta_1 + \theta_2 + \theta_3)$ $y_3 = y_2 + \sin(\theta_1 + \theta_2 + \theta_3)$

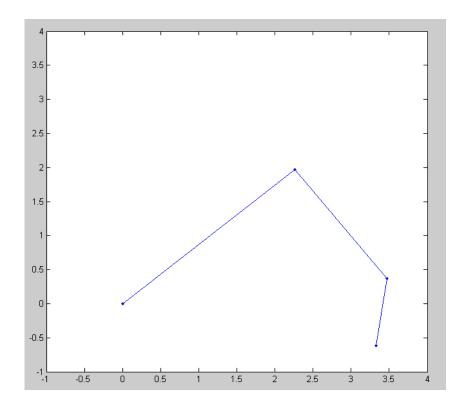
5) Plot the tip position (x3, y3) for

$$\theta_1 = 41^0$$
 $\theta_2 = -94^0$ $\theta_3 = -45^0$

Matlab program:

- Pass the angles in degrees
- Return the tip position (x3, y3)
- Just for fun, also plot the position of the robot (not required but fun to see)

File RRR.m


```
function [x3, y3] = RRR(q1, q2, q3)
   % convert to radians
   q1 = q1 * pi / 180;

q2 = q2 * pi / 180;
   q3 = q3 * pi / 180;
   % compute the joint positions
   x0 = 0;
   v0 = 0;
   x1 = x0 + 3*\cos(q1);
   y1 = y0 + 3*sin(q1);
   x2 = x1 + 2*\cos(q1+q2);
   y2 = y1 + 2*sin(q1+q2);
   x3 = x2 + 1*\cos(q1+q2+q3);
   y3 = y2 + 1*\sin(q1+q2+q3);
   % just for fun, plot the resulting robot position
   plot([x0,x1,x2,x3],[y0,y1,y2,y3],'b.-');
   ylim([-1,4]);
   xlim([-1,4]);
   pause(0.01);
   end
```

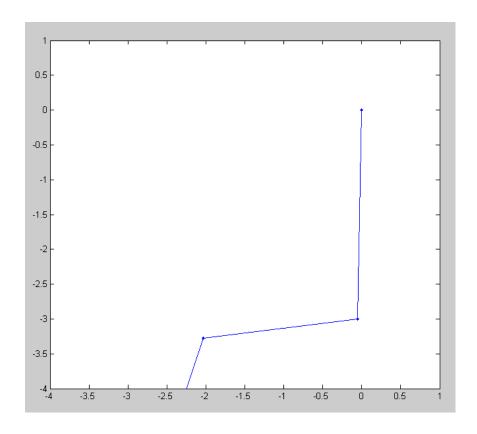
From the command window, call the subroutine

>>> [x3, y3] = RRR(41, -94, -45)

$$x3 = 3.3286$$

 $y3 = -0.6194$

Tip Position 3.3286 -0.6194


6) Plot the tip position (x3, y3) for

$$\theta_1 = -91^0$$
 $\theta_2 = -81^0$ $\theta_3 = 65^0$

$$>> [x3, y3] = RRR(-91, -81, 65)$$

$$x3 = -2.3253$$

$$y3 = -4.2342$$

Robot Tip Position (Inverse Kinematics & fminsearch())

- 7) Write a Matlab function which
 - Is passed the angles $(\theta_1, \theta_2, \theta_3)$,
 - Computes the tip position, and
 - Returns the distance from the tip position and point (x = 2.0, y = 0.0)

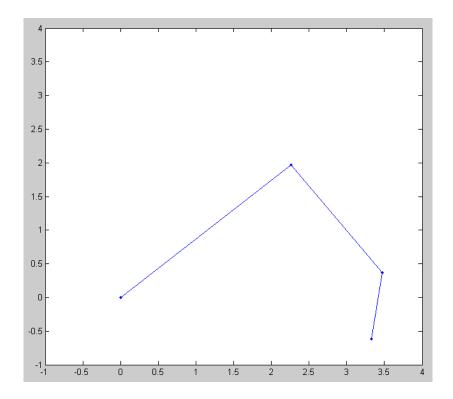
Comment: Part of the power of Matlab is once you write a function, that function becomes part of the Matlab library of functions you can use. That lets you build up a rather powerful set of instructions.

For example, use the previous function from problem #5 (RRR.m) to create a new function; RRR_Cost

Matlab Function: RRR_Cost.m

• uses RRR.m (problem #5)

```
function [J] = RRR_Cost(z)

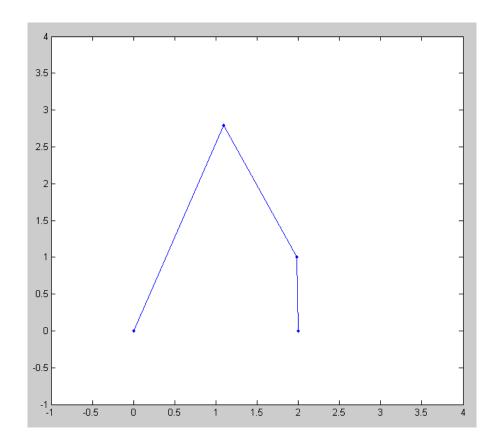

q1 = z(1);
q2 = z(2);
q3 = z(3);

[x3, y3] = RRR(q1, q2, q3);

J = sqrt( (x3-2)^2 + (y3-0)^2 );
end
```

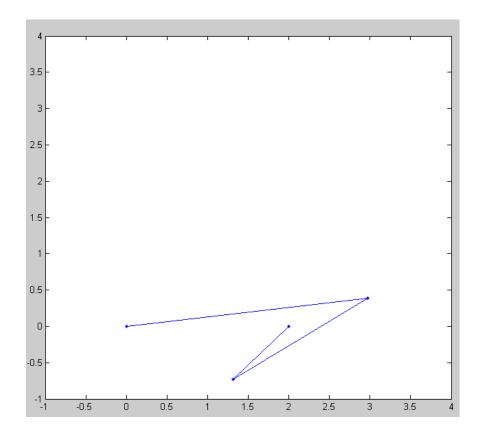
Checking: The tip is 1.4659 meters from the point (2,0)

```
>> J = RRR_Cost([41, -94, -45])
J = 1.4659
```



8) Use the fminsearch() to determine the joint angles which place the robot at (x3 = 2.0, y3 = 1.0)

From the command window:


One solution is

- q1 = 68.5320 degrees
- q2 = -132.1667 degrees
- q3 = -25.5707 degrees

This solution isn't unique. With 3 degrees of freedom and two constraints, there are an infinite number of solutions. Change the initial guess and you converge to another valid solution

```
>> [Q,e] = fminsearch('RRR_Cost', [21, -195, -85])
Q = 7.4057 -153.5350 -167.1550
e = 3.7470e-009
```

