ECE 111 - Homework #7

Week #7: ECE 311 Circuits II - Due Tuesday, February 28th

1) Assume the current flowing through a one Farad capacitor is shown below. Sketch the voltage. Assume V(0) = 0. The voltage is the integral of the current (capacitors are integrators)

$$V = \frac{1}{C} \int I \cdot dt$$

Since C = 1F, the votlage is simply the integral of the current (same as homework #4)

Problem 2-5: Assume a 10-stage RC filter (V0 .. V10) 10snip

Problem 2) Write the dynamics for this system as a set of ten coupled differential equations:

$$I_{1} = C \frac{dV_{1}}{dt} = \sum (\text{current to nodeV}_{1})$$

$$I_{1} = 0.012 \frac{dV_{1}}{dt} = \left(\frac{V_{0} - V_{1}}{10}\right) + \left(\frac{V_{2} - V_{1}}{10}\right) + \left(\frac{0 - V_{1}}{500}\right)$$

$$0.012 \frac{dV_{1}}{dt} = \left(\frac{1}{10}\right) V_{0} - \left(\frac{1}{10} + \frac{1}{500} + \frac{1}{10}\right) V_{1} + \left(\frac{1}{10}\right) V_{2}$$

$$\frac{dV_{1}}{dt} = 8.333 V_{0} - 16.833 V_{1} + 8.333 V_{2}$$

The same pattern holds for nodes 2..9

$$\frac{dV_2}{dt} = 8.333V_1 - 16.833V_2 + 8.333V_3$$
$$\frac{dV_3}{dt} = 8.333V_2 - 16.833V_3 + 8.333V_4$$
$$\vdots$$

Node #10 is a little different since there is only one 10-Ohm resistor connected to it

$$I_{10} = 0.012 \frac{dV_{10}}{dt} = \left(\frac{V_9 - V_{10}}{10}\right) + \left(\frac{0 - V_{10}}{500}\right)$$
$$\frac{dV_{10}}{dt} = 8.333V_9 - 8.50V_{10}$$

Forced Response for a 10-Node RC Filter (heat.m):

Problem 3) Using Matlab, solve these ten differential equations for 0 < t < 5 s assuming

- The initial voltages are zero, and
- V0 = 10V.

Matlab Code:

```
% ECE 111 Homework #7
V = zeros(10, 1);
dV = zeros(10, 1);
V0 = 10;
dt = 0.01;
t = 0;
y = [];
while (t < 10)
 dV(1) = 8.333*V0 - 16.833*V(1) + 8.333*V(2);
 dV(2) = 8.333*V(1) - 16.833*V(2) + 8.333*V(3);
       dV(3) = 8.333*V(2) - 16.833*V(3) + 8.333*V(4); 
      dV(4) = 8.333*V(3) - 16.833*V(4) + 8.333*V(5); 
 dV(9) = 8.333*V(8) - 16.833*V(9) + 8.333*V(10);
 dV(10) = 8.333 * V(9) - 8.5 * V(10);
 V = V + dV * dt;
 t = t + dt;
 plot([0:10], [V0;V], '.-');
 ylim([0,10]);
 pause(0.01);
  y = [y ; V'];
end
pause(3)
t = [1:length(y)]' * dt;
plot(t,y);
xlabel('Time (seconds)');
ylabel('Volts');
```

Resulting Graph (for 0..10 seconds)

Voltage at Eac Node at t = 10 second

Votlage of each node vs. Time

Problem 4) Using CircuitLab, find the response of this circuit to a 10V step input. *note: It's OK if you only build this circuit to 3 nodes...*

This is almost the same result as Matlab (a little different since there are only four capacitors rather than ten)

Natural Response

Problem 5) Assume V0 = 0V. Determine the initial conditions of V1..V10 so that

- The maximum voltage is 10V and
- 5a) The voltages go to zero as slow as possible
- 5b) The voltages go to zero as fast as possible.

Simulate the response for these initial conditions in Matlab.

This is an eigenvector problem

- A is a 10x10 matrix
- A has ten eigenvalues (how the system behaves)
- A has ten eigenvectors (what behaves that way)

The slow eigenvector decays as per its eigenvector (red)

The fast eigenvector decays as per its eigenvector (blue)

<pre>>> A = zeros(10,10); >> for i=1:9 A(i,i) = -16.833; A(i+1,i) = 8.333; A(i,i+1) = 8.333; end >> A(10,10) = -8.5; >> A</pre>									
-16.8330 8.3330 0 0 0 0 0 0 0 0 0 0 0 0	8.3330 -16.8330 8.3330 0 0 0 0 0 0 0 0 0	0 8.3330 -16.8330 8.3330 0 0 0 0 0 0 0	0 8.3330 -16.8330 8.3330 0 0 0 0 0	0 0 8.3330 -16.8330 8.3330 0 0 0 0	0 0 8.3330 -16.8330 8.3330 0 0 0	0 0 0 8.3330 -16.8330 8.3330 0 0	0 0 0 0 8.3330 -16.8330 8.3330 0	0 0 0 0 0 8.3330 -16.8330 8.3330	0 0 0 0 0 0 8.3330 -8.5000
>> [M,V] = eig(A)									
M =									
fast -0.1286 0.2459 -0.3412 0.4063 -0.4352 0.4255 -0.3780 0.2969 -0.1894 0.0650	-0.2459 0.4063 -0.4255 0.2969 -0.0650 -0.1894 0.3780 -0.4352 0.3412 -0.1286	0.3412 -0.4255 0.1894 -0.4255 0.3412 0.0000 -0.3412 0.4255 -0.1894	$\begin{array}{c} 0.4063 \\ -0.2969 \\ -0.1894 \\ 0.4352 \\ -0.1286 \\ -0.3412 \\ 0.3780 \\ 0.0650 \\ -0.4255 \\ 0.2459 \end{array}$	$\begin{array}{c} 0.4352 \\ -0.0650 \\ -0.4255 \\ 0.1286 \\ 0.4063 \\ -0.1894 \\ -0.3780 \\ 0.2459 \\ 0.3412 \\ -0.2969 \end{array}$	0.4255 0.1894 -0.3412 0.3412 0.1894 0.4255 -0.0000 -0.4255 -0.1894 0.3412	0.3780 0.3780 -0.0000 -0.3780 -0.3780 0.3780 0.3780 0.3780 0.3780 0.0000 -0.3780	0.2969 0.4352 0.3412 0.0650 -0.2459 -0.4255 -0.3780 -0.1286 0.1894 0.4063	-0.1894 -0.3412 -0.4255 -0.4255 -0.3412 -0.1894 0.0000 0.1894 0.3412 0.4255	slow 0.0650 0.1286 0.1894 0.2459 0.2969 0.3412 0.3780 0.4063 0.4255 0.4352
V =									
-32.7586	-30.6031	-27.2241	-22.9218	-18.0785	-13.1245	-8.5000	-4.6160	-1.8175	-0.3531

Change the Matlab code for the fast eigenvector

```
% ECE 111 Homework #7
V = M(:,1) * 20;
dV = zeros(10,1);
V0 = 0;
dt = 0.001;
t = 0;
y = [];
while(t < 1)
dV(1) = 8.333*V0 - 16.833*V(1) + 8.333*V(2);
etc
```


Fast Eigenvector

The fast eigenvector decays quickly (as exp(-32.75t)

Slow Eigenvector

The slow eigenvector decays slowly

Problem 6) Assume Vin = 0V. Pick random voltages for V1 .. V10 in the range of (0V, 10V): V = 10 * rand(10, 1)

Plot the votlages at t = 2. Which eigenvector does it look like?

Initial Voltage (red) and votlage after 2 seconds (blue)

After two seconds, the voltage looks like the slow eigenvector