ECE 111 - Homework #1

Week #1: Algebra. Due 11am Tuesday, August 30th

functions *poly* and *roots*:

1) Use MATLAB, find the roots the the following polynomials:

a) $x^3 - 55x^2 + 1004x - 6080 = 0$

In Matlab, solving two different ways:

>> P = [1, -55, 1004, -6080]P = 1 -55 1004 -6080 >> roots(P) 20.0000 19.0000 16.0000 >> roots([1,-55,1004,-6080]) 20.0000 19.0000 16.0000 >> $x^4 - 24x^3 + 209x^2 - 786x + 1080 = 0$ b) >> P = [1, -24, 209, -786, 1080]P = 1 -24 209 -786 1080 >> roots(P) 9.0000 6.0000 5.0000 4.0000 c) $x^5 + 8x^4 - 49x^3 - 308x^2 + 708x + 2160 = 0$ >> P = [1, 8, -49, -308, 708, 2160]P = 1 8 -49 -308 708 >> roots(P)

2160

-9.0000 -6.0000 5.0000 4.0000 -2.0000

2) Use Matlab to multiply our the following polynomials.

a)
$$(x-4)(x+3)(x-10)(x+9) = 0$$

 $>> R = [4,-3,10,-9]$
 $R = 4 -3 10 -9$
 $>> P = poly(R)$
 $P = 1 -2 -101 102 1080$
 $>> roots(P)$
 10.0000
 -9.0000

4.0000

meaning

$$x^4 - 2x^3 - 101x^2 + 102x + 1080 = 0$$

b)
$$(x-3)(x-4)(x-5)(x-6)(x+1)(x+4) = 0$$

3.0000

T

>>

meaning

$$x^6 - 13x^5 + 33x^4 + 181x^3 - 874x^2 + 432x + 1440 = 0$$

Graphing in Matlab

3) Plot the two functions in Matlab and determine all solutions in the range of -4 < x < +4

$$y = \sin(x) \cdot \cos(3x)$$
$$y = \left(\frac{x(x-2)}{10}\right)$$

In Matlab

>> x = [-4:0.01:4]';
>> y1 = sin(x) .* cos(3*x);
>> y2 = x .* (x-2)/10;
>> plot(x,y1,'b',x,y2,'r');
>> xlabel('x');
>> ylabel('y');

From the graph, there are six solutions: $x = \{-1.4, -0.6, -0.1, 0.6, 1.6, 2.5, ...\}$

4) Plot the two functions in Matlab and determine all solutions in the range of -4 < x < +4

```
y = (x - 2)(x)(x + 2)
    y = \frac{x}{2} - 2
>> x = [-4:0.01:4]';
>> y1 = (x-2) .* (x) .* (x+2);
>> y2 = x/2 - 2;
>> plot(x,y1,x,y2);
>> x3 = [-2.4,0.5,1.8]';
>> y3 = x3/2 - 2;
>> plot(x,y1,'b',x,y2,'r',x3,y3,'r.')
>> xlabel('x');
>> ylabel('y');
>> [x3,y3]
       Х
               -3.2000
    -2.4000
     0.5000
               -1.7500
     1.8000
               -1.1000
```


Monte-Carlo Simulations:

Two teams, A and B, are playing a game. Team A has a

- 50% chance of winning any given game (+1 point)
- 20% chance of a tie (+1/2 point), and
- 30% chance of a loss (+0 points)

5) For Loops: Suppose the two teams play a 9-game match. The match winner is whoever has 5 wins or more. Determine the probability that

- Team A wins the match (5 or more points),
- There is a tie (Team A has 4.5 points), and
- Team A loses (4 points or less)

matlab code:

```
Wins = 0;
Ties = 0;
Loss = 0;
for i=1:1e5
   A = 0;
    for n=1:9
       R = rand;
        if(R < 0.5) A = A + 1;
        elseif(R < 0.7) A = A + 0.5;
        else A = A + 0;
        end
    end
    if(A > 4.5) Wins = Wins + 1;
    elseif(A == 4.5) Ties = Ties + 1;
    else Loss = Loss + 1;
    end
end
disp([Wins, Ties, Loss]/1e5)
```

Results

wins	ties	losses
0.6923	0.1158	0.1920
0.6957	0.1139	0.1903
0.6954	0.1135	0.1911
0.6929	0.1139	0.1933
0.6947	0.1132	0.1921

It's about

- A 69% chance that A wins
- 11% chance of a tie
- 19% chance B wins

6) While Loops: Suppose the two teams play until one team is up by 2 points. Determine the probability that team A will win the match.

hint: use a while-loop and keep looping until one team is up by 2 games.

Code:

```
Wins = 0;
Loss = 0;
for i=1:1e5
    A = 0;
    while (abs(A) < 2)
       R = rand;
        if(R < 0.5) A = A + 1;
        elseif(R < 0.7) A = A + 0;
        else A = A - 1;
        end
    end
    if (A > 0) Wins = Wins + 1;
    else Loss = Loss + 1;
    end
end
disp([Wins, Loss]/1e5)
```

Results

Losses
0.2648
0.2655
0.2651
0.2609
0.2657
0.2661
0.2631
0.2670
0.2659

There is about a

- 73% chance that A wins
- 26% chance that B wins
- 0% chance of a tie

7) Gauss' Dilema: Play the following game 1000 times. (i.e. use Matlab and a for loop along with a while loop)

- It costs \$20 to play. The pot starts at \$1.
- Flip a coin. If you get a heads, the pot doubles. If you get a tails, the game is over and you collect the money in the pot.
- Keep flipping until you get a tails.

How much money do you expect to win (or lose) each time you play this game?

```
Code:
```

```
Winnings = 0;
for i=1:1e3
    Pot = 1;
    while(rand < 0.5)
        Pot = Pot * 2;
        end
    Winnings = Winnings + Pot - 20;
end
disp(Winnings)
```

Results:

-1635 1195 -12492 -6053 -14601 -13066 -15663 -14667 -14030 -12704 -13415 -15238 -14886 -4447 -12455

On average, I'm losing about \$13,000 every 1000 times I play this game

- But, the mathematics say I should win an infinite amount each time I play (on average)
- Hence the name Gauss' Dilema

Dice:

8a) Determine the probability distribution for the following:

- Roll five 6-sided dice and five 8-sided dice.
- The total is the sum of all of the dice.

Y = 5d6 + 5d8

- 8b) What is the probability of the total being 50?
- 8c) What is the probability of the total being 50 or more?

Code:

```
B = 0;
C = 0;
for i = 1:1e5
    d6 = ceil(6*rand(1,5));
    d8 = ceil(8*rand(1,5));
    Y = sum(d6) + sum(d8);
    if(Y == 50) B = B + 1; end
    if(Y >= 50) C = C + 1; end
end
disp([B,C]/1e5)
```

Results

= 50	>= 50
0.0187	0.0684
0.0198	0.0706
0.0190	0.0697
0.0186	0.0691
0.0186	0.0685
0.0192	0.0687
0.0193	0.0694

There is about a

- 1.9% chance the sum will be 50
- 6.9% chance the sum will be 50 or more

9) Two people are playing a dice game:

- Player A rolls five 6-sided and five 8-sided dice and takes the total (5d6 + 5d8)
- Player B rolls two 100-sided dice and takes the lower of the two numbers.
- Whoever has the highest score wins.

Determine the probability that

- A wins
- There is a tie, and
- B wins

Code:

```
Wins = 0;
Ties = 0;
Loss = 0;
for i = 1:1e5
    d6 = ceil(6*rand(1,5));
    d8 = ceil(8*rand(1,5));
    d100 = ceil(100*rand(1,2));
    A = sum(d6) + sum(d8);
    B = min(d100);
    if(A > B) Wins = Wins + 1; end
    if(A == B) Ties = Ties + 1; end
    if(A < B) Loss = Loss + 1; end
end
disp([Wins, Ties, Loss]/1e5)
```

Results:

A wins	Tie	B wins
0.6220	0.0123	0.3657
0.6192	0.0129	0.3679
0.6246	0.0120	0.3634
0.6204	0.0122	0.3674
0.6243	0.0123	0.3635
0.6218	0.0126	0.3656
0.6231	0.0123	0.3646

There is about a

- 62% chance that A will win,
- 1.2% chance of a tie, and
- 36% chance B wins